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Notes from a seminar talk. The main reference is [1].

1 The modular group

Let H denote the upper half of the complex plane C, or in other words, the complex
numbers with imaginary part > 0. The group

SL2(R) = {
(
a

c

b

d

)
|ad− bc = 1}. (1.1)

acts on the upper half plane by the Mobius transformation,(
a

c

b

d

)
z =

az + b

cz + d
, (1.2)

It is easy to check that H is invariant under the action of SL2(R). Note that

− Iz =

(
−1

0

0

−1

)
z =
−z
−1

= z, (1.3)

or more generally, changing the sign of an element of SL2(R) does not change what it does
to an element of the upper-half plane, so we define

PSL2(R) = SL2(R)/± I, (1.4)

whose action on H is faithful, meaning if for g ∈ PSL2(R), gz = z the g = I. Let SL2(Z)
be the discrete subgroup of SL2(R) that has entries in Z. The modular group is defined
as the group

Γ = PSL2(Z) = SL2(Z)/± I (1.5)

Let t =
(
1
0
1
1

)
, s =

(
0
−1

1
0

)
such that s2 = 1, st3 = 1. It can be shown that s and t with

these relations generate Γ.
The subset D of H, consisting of points z such that |z| ≥ 1 and |Re(z)| ≤ 1/2, is a

fundamental domain for the action of SL2(Z).
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2 Modular functions

Definition 2.1. Let k ∈ Z. A function f : H→ C is called weakly modular of weight 2k
if it is meromorphic on H such that

f(z) = (cz + d)−2kf(
az + b

cz + d
), for any

(
a

c

b

d

)
∈ SL2(Z). (2.1)

Let g be the image of
(
a
c
b
d

)
in Γ. Note that

d(gz)

dz
= (cz + d)−2 (2.2)

which lets us write (2.1) in the form

f(gz)

f(z)
= (

d(gz)

dz
)−k (2.3)

or equivalently
f(gz)d(gz)k = f(z)dzk. (2.4)

This shows that the “differential form of weight k” is invariant under Γ. Since Γ is
generated by s and t, it is enough to check that it is invariant under s and t. Under the
action of t,

f(z) = f(z + 1) (2.5)

and under the action of s

f(z) = z−2kf(
−1

z
). (2.6)

If condition (2.5) is satisfied, then f is a periodic function of period 1, and may written as
a function f̃(q) where the variable q = exp(2πiz). If f̃ can be holomorphically (meromor-
phically) continued at the origin, then we will say that f is holomorphic (meromorphic)
at infinity. This means f̃ admits a Laurent expansion in the neighbourhood of the origin.

f̃(q) =

∞∑
n=−∞

anq
n (2.7)

where an = 0 for n small enough.

Definition 2.2. 1. A weakly modular function is modular if it is meromorphic at ∞.

2. A modular form is a modular function that is holomorphic everywhere (including
∞). If it is zero at ∞ then it is called a cusp form (forme parabolique in French,
Spitzenform in German).

A modular form of weight 2k is given by a series

f(z) =

∞∑
n=0

anq
n =

∞∑
n=0

an exp(2πinz) (2.8)

which converges for |q| ≤ 1 and satisfies

f(−1/z) = z2kf(z) (2.9)
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and it is parabolic if a0 = 0. The exponent is always chosen to be of the form 2k, because
if we choose it as l 6∈ 2Z, then for g = −I in the definition

f(z) = (−1)lf(z) (2.10)

which means f(z) is the constant function with value 0.
If f and f ′ are modular forms of weight 2k and 2k′, then ff ′ is a modular form of

weight 2k + 2k′.

3 Lattice functions

A lattice is a discrete subgroup G of a finite dimensional R-vector space V such that
V/G is compact, or equivalently, there exists an R-basis of V which is a Z basis of G.
For example, Z2 is a lattice in R2, because R2/Z2 is compact (or alternatively, the basis
{(1, 0), (0, 1)} is a Z basis for Z2). Let L be the set of lattices in C considered as R2, and
M the set of couples (ω1, ω2) of elements in C× such that Im (ω1/ω2) > 0. Each element
of M gives rise to a lattice

L(ω1, ω2) = Zω1 ⊕ Zω2, (3.1)

with basis {ω1, ω2}. This define a surjection M → L.

If g =
(
a
c
b
d

)
∈ SL2(Z) acts on the vector (ω1, ω2) ∈ M , we have ω′1 = aω1 + bω2 and

ω′2 = cω1 + dω2, which is also (obviously) a basis for L(ω1, ω2).

Proposition 3.1. Two elements of M define the same lattice if and only if they are
congruent mod SL2(Z).

Proof. Suppose (ω1, ω2) and (ω′1, ω
′
2) define the same lattice, then there exists a integer

matrix
(
a
c
b
d

)
having determinant ±1 that maps the first basis to the second. If det(g) =

−1, then Im(ω1/ω2) and Im(ω′1/ω
′
2), which is not possible by definition, so det(g) = 1.

There is thus an bijection between the set L of lattices in C and the quotientM/SL2(Z).
If we quotient M by scalings in C×, then this is in bijection with H (via (ω1, ω2) 7→ ω1/ω2)
and the action of SL2(Z) reduces to that of Γ.

Proposition 3.2. The map (ω1, ω2) 7→ ω1/ω2 induces a bijection between L/C× and H/Γ.

Remark 3.3. The set L/C× ' H/Γ also admits an alternative description as the set of
isomorphism classes of elliptic curves.

A function F has weight 2k for k ∈ Z if

F (λL) = λ−2kF (L) (3.2)

for a lattice L and λ ∈ C∗. Denoting the value of F on L(ω1, ω2) by F (ω1, ω2), the above
condition yields

F (λω1, λω2) = λ−2kF (ω1, ω2) (3.3)

and further F (ω1, ω2) is invariant under the action of SL2(Z) onM . The product ω2k
2 F (ω1, ω2)

only depends on the ratio z = ω1/ω2, and so there exists a function

F (ω1, ω2) = ω−2k2 f(ω1/ω2) (3.4)
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Since F is invariant under SL2(Z), we get

f(z) = (cz + d)−2kf(
az + b

cz + d
) (3.5)

Conversely, for every f satisfying this condition, we can construct a lattice function using
(3.4). There is thus an identification of modular functions of weight 2k with certain lattice
functions of weight 2k.

4 Eisenstein series

Lemma 4.1. For a lattice L in C, the series
∑
γ∈L

′
1/|γ|σ converges for σ > 2, where the ′

denotes the sum over non-zero elements of L.

Let k > 1. If L is a lattice in C, define

Gk(L) =
∑
γ∈L

′
1/γ2k (4.1)

This series converges because of the lemma above, and Gk is clearly of weight 2k. Gk is
called the Eisenstein series of index k. It can be seen as a function defined on M given by

Gk(ω1, ω2) =
∑
m,n

′ 1

(mω1 + nω2)2k
. (4.2)

Fact 4.2. If k > 1, the Eisenstein series Gk(z) is a modular form of weight 2k, and

Gk(∞) = 2ζ(2k) (4.3)

where ζ is the Riemann zeta function.

The lowest weight Eisenstein series G2 and G3 have weights 4 and 6 respectively. It
is standard to define

g2 = 60G2, g3 = 140G3 (4.4)

and we get g2(∞) = 120ζ(4) = 4
3π

4 and g3(∞) = 280ζ(6) = 8
27π

6. The Eisenstein series
thus give us a large class of examples of modular forms. If we define

∆ = g32 − 27g23 , (4.5)

we see that ∆(∞) = 0 and this is an example of a cusp form.
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